2b: Measures of Spatial Autocorrelation

Author

Magdalene Chan

Published

November 22, 2023

Modified

November 25, 2023

Spatial autocorrelation is the term used to describe the presence of systematic spatial variation in a variable. Where there is positive (high) spatial autocorrelation, there is spatial clustering and neighbours are similar. Conversely, where there is negative (low) spatial autocorrelation, checkerboard patterns are observed and neighbours are dissimilar.

Spatial autocorrelation can be used in the development of spatial policy, where one of the main development objectives of governments and planners is to ensure equal distribution of development in the area. Appropriate spatial statistical methods can be applied to discover if developments are evenly distributed geographically – if there are signs of spatial clustering and if so, where they are located.

Getting Started

The code chunk below uses p_load() of pacman package to check if the required packages have been installed on the computer. If they are, the packages will be launched.

  • sf package is used for importing, managing, and processing geospatial data.
  • tmap package is used for thematic mapping.
  • spdep package is used to create spatial weights matrix objects.
pacman::p_load(sf, spdep, tmap, tidyverse)

The data sets used are:

  • Hunan county boundary layer: a geospatial data set in ESRI shapefile format.
  • Hunan_2012.csv: csv file that contains selected Hunan’s local development indicators in 2012.

Importing Data

Import shapefile into R

The code chunk below uses the st_read() function of sf package to import Hunan county boundary shapefile into R as a simple feature data frame called hunan.

hunan <- st_read(dsn = "data/geospatial", 
                 layer = "Hunan")
Reading layer `Hunan' from data source 
  `C:\magdalenecjw\ISSS624 Geospatial\Hands_on_Exercise\Ex2\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS:  WGS 84

There are a total of 88 polygon features and 7 fields in hunan simple feature data frame. hunan is in wgs84 GCS.

Import aspatial data into R

The code chunk below uses the read_csv() function of readr package to import Hunan_2012.csv file into R and save it as a R dataframe called hunan2012.

hunan2012 <- read_csv("data/aspatial/Hunan_2012.csv")

Performing relational join

left_join() of dplyr is used to join the geographical data and attribute table using County as the common identifier.

hunan <- left_join(hunan,hunan2012)%>%
  select(1:4, 7, 15)

Visualising Regional Development Indicator

Prepare a basemap and a choropleth map showing the distribution of GDPPC 2012 by using qtm() of tmap package.

equal <- tm_shape(hunan) +
  tm_fill("GDPPC",
          n = 5,
          style = "equal") +
  tm_borders(alpha = 0.5) +
  tm_layout(main.title = "Equal interval classification")

quantile <- tm_shape(hunan) +
  tm_fill("GDPPC",
          n = 5,
          style = "quantile") +
  tm_borders(alpha = 0.5) +
  tm_layout(main.title = "Equal quantile classification")

tmap_arrange(equal, 
             quantile, 
             asp=1, 
             ncol=2)

Global Spatial Autocorrelation

This section details the steps taken to compute global spatial autocorrelation statistics and to perform spatial complete randomness test for global spatial autocorrelation.

Computing Contiguity Spatial Weights

Before computing the global spatial autocorrelation statistics, construct a spatial weights of the study area. The spatial weights is used to define the neighbourhood relationships between the geographical units (i.e. county) in the study area.

In the code chunk below, poly2nb() of spdep package is used to compute contiguity weights matrices for the study area. This function builds a neighbours list based on regions with contiguous boundaries. The code chunk below computes the queen contiguity weights matrix.

The queen argument takes TRUE (default) or FALSE as options. If queen = TRUE, this function will return a list of first order neighbours using the Queen criteria.

wm_q <- poly2nb(hunan, 
                queen=TRUE)
summary(wm_q)
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 
Link number distribution:

 1  2  3  4  5  6  7  8  9 11 
 2  2 12 16 24 14 11  4  2  1 
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 11 links

The summary report above shows that there are 88 area units in Hunan. The most connected area unit has 11 neighbours. There are two area units with only one neighbours.

Row-standardised weights matrix

Next, assign equal weights to each neighboring polygon (style=“W”). This is accomplished by assigning the fraction 1/(#ofneighbors) to each neighboring county then summing the weighted income values. While this is the most intuitive way to summarise the neighbors’ values, it has one drawback in that polygons along the edges of the study area will base their lagged values on fewer polygons thus potentially over- or under-estimating the true nature of the spatial autocorrelation in the data. Other more robust options are available to correct such drawbacks, notably style=“B”.

The zero.policy=TRUE option allows for lists of non-neighbors. This should be used with caution since users may not be aware of missing neighbors in their dataset. Using zero.policy=FALSE at first instance may be more advised as it returns an error if there are empty neighbour sets.

rswm_q <- nb2listw(wm_q, 
                   style="W", 
                   zero.policy = TRUE)
rswm_q
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: W 
Weights constants summary:
   n   nn S0       S1       S2
W 88 7744 88 37.86334 365.9147

Global Spatial Autocorrelation: Moran’s I

The code chunk below performs Moran’s I statistical testing using moran.test() of spdep to compute Global Spatial Autocorrelation statistics.

At a confidence interval of 95%,

  • H0: There is no spatial autocorrelation in the dataset.
  • H1: There is spatial autocorrelation in the dataset.
moran.test(hunan$GDPPC, 
           listw=rswm_q, 
           zero.policy = TRUE, 
           na.action=na.omit)

    Moran I test under randomisation

data:  hunan$GDPPC  
weights: rswm_q    

Moran I statistic standard deviate = 4.7351, p-value = 1.095e-06
alternative hypothesis: greater
sample estimates:
Moran I statistic       Expectation          Variance 
      0.300749970      -0.011494253       0.004348351 

Given that p-value < alpha value, we can reject the null hypothesis. Given that Moran I (Z value) is positive, it suggests that the features in the study area are clustered and observations tend to be similar.

A positive Moran’s I value (I>0) suggests clustering and similar observations. A negative Moran’s I value (I<0) suggests dispersion and dissimilar observations. An approximately zero Moran’s I value suggests observations are arranged randomly over space.

Computing Monte Carlo Moran’s I

Monte Carlo simulation is used if there are doubts that the assumptions of Moran’s I are true (normality and randomization). The code chunk below performs permutation test for Moran’s I statistic by using moran.mc() of spdep. A total of 1000 simulations will be performed.

set.seed(1234)
bperm= moran.mc(hunan$GDPPC, 
                listw=rswm_q, 
                nsim=999, 
                zero.policy = TRUE, 
                na.action=na.omit)
bperm

    Monte-Carlo simulation of Moran I

data:  hunan$GDPPC 
weights: rswm_q  
number of simulations + 1: 1000 

statistic = 0.30075, observed rank = 1000, p-value = 0.001
alternative hypothesis: greater

Given that p-value < alpha value, we can reject the null hypothesis. Given that the Z value remains positive, it supports the earlier drawn conclusion that the features in the study area are clustered and observations tend to be similar.

Visualising Monte Carlo Moran’s I

It is good practice to examine the simulated Moran’s I test statistics in greater detail. This can be achieved by plotting the distribution of the statistical values as a histogram by using the code chunk below, which uses hist() and abline() of R Graphics.

mean(bperm$res[1:999])
[1] -0.01504572
var(bperm$res[1:999])
[1] 0.004371574
summary(bperm$res[1:999])
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-0.18339 -0.06168 -0.02125 -0.01505  0.02611  0.27593 
hist(bperm$res, 
     freq=TRUE, 
     breaks=20, 
     xlab="Simulated Moran's I")
abline(v=0, 
       col="red") 

When comparing the observed Moran’s I value with the distribution of Moran’s I values obtained from the Monte Carlo simulation, it can be noted that the observed value is in the extreme tails of the distribution. This further supports the conclusion drawn earlier that the spatial pattern in the data is significantly different from randomness and supports the presence of spatial autocorrelation.

Global Spatial Autocorrelation: Geary’s C

Another method that can be used to compute Global Spatial Autocorrelation statistics is Geary’s c statistics testing. The code chunk below performs Geary’s C test using geary.test() of spdep.

At a confidence interval of 95%,

  • H0: There is no spatial autocorrelation in the dataset.
  • H1: There is spatial autocorrelation in the dataset.
geary.test(hunan$GDPPC, listw=rswm_q)

    Geary C test under randomisation

data:  hunan$GDPPC 
weights: rswm_q 

Geary C statistic standard deviate = 3.6108, p-value = 0.0001526
alternative hypothesis: Expectation greater than statistic
sample estimates:
Geary C statistic       Expectation          Variance 
        0.6907223         1.0000000         0.0073364 

Given that p-value < alpha value, we can reject the null hypothesis. Given that Geary C (Z value) is small (<1), it suggests that the features in the study area are clustered and observations tend to be similar.

A large Geary’s C value (C>1) suggests dispersion and dissimilar observations. A small Geary’s C value (C<1) suggests clustering and similar observations. A Geary’s C value of 1 suggests observations are arranged randomly over space.

Computing Monte Carlo Geary’s C

The code chunk below performs permutation test for Geary’s C statistic by using geary.mc() of spdep.

set.seed(1234)
bperm=geary.mc(hunan$GDPPC, 
               listw=rswm_q, 
               nsim=999)
bperm

    Monte-Carlo simulation of Geary C

data:  hunan$GDPPC 
weights: rswm_q 
number of simulations + 1: 1000 

statistic = 0.69072, observed rank = 1, p-value = 0.001
alternative hypothesis: greater

Given that p-value < alpha value, we can reject the null hypothesis. Given that the Z value remains positive, it supports the earlier drawn conclusion that the features in the study area are clustered and observations tend to be similar.

Visualising Monte Carlo Geary’s C

Next, plot a histogram to reveal the distribution of the simulated values by using the code chunk below.

mean(bperm$res[1:999])
[1] 1.004402
var(bperm$res[1:999])
[1] 0.007436493
summary(bperm$res[1:999])
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.7142  0.9502  1.0052  1.0044  1.0595  1.2722 
hist(bperm$res, freq=TRUE, breaks=20, xlab="Simulated Geary c")
abline(v=1, col="red") 

When comparing the observed Geary’s C value with the distribution of Geary’s C values obtained from the Monte Carlo simulation, it can be noted that the observed value is in the extreme tails of the distribution. This further supports the conclusion drawn earlier that the spatial pattern in the data is significantly different from randomness and supports the presence of spatial autocorrelation.

Spatial Correlogram

Spatial correlograms are used to examine patterns of spatial autocorrelation in the data or model residuals. They show how correlated the pairs of spatial observations are when the distance (lag) between them increases - they are plots of some index of autocorrelation (Moran’s I or Geary’s c) against distance.Although correlograms are not as fundamental as variograms (a keystone concept of geostatistics), they are very useful as an exploratory and descriptive tool. For this purpose, they provide richer information than variograms.

Compute Moran’s I correlogram

In the code chunk below, sp.correlogram() of spdep package is used to compute a 6-lag spatial correlogram of GDPPC. The global spatial autocorrelation used in Moran’s I. The plot() of base Graph is then used to plot the output.

MI_corr <- sp.correlogram(wm_q, 
                          hunan$GDPPC, 
                          order=6, 
                          method="I", 
                          style="W")
plot(MI_corr)

Plotting the output alone may not provide complete interpretation. This is because not all autocorrelation values are statistically significant. Hence, it is important to examine the full analysis report by printing out the analysis results as in the code chunk below.

print(MI_corr)
Spatial correlogram for hunan$GDPPC 
method: Moran's I
         estimate expectation   variance standard deviate Pr(I) two sided    
1 (88)  0.3007500  -0.0114943  0.0043484           4.7351       2.189e-06 ***
2 (88)  0.2060084  -0.0114943  0.0020962           4.7505       2.029e-06 ***
3 (88)  0.0668273  -0.0114943  0.0014602           2.0496        0.040400 *  
4 (88)  0.0299470  -0.0114943  0.0011717           1.2107        0.226015    
5 (88) -0.1530471  -0.0114943  0.0012440          -4.0134       5.984e-05 ***
6 (88) -0.1187070  -0.0114943  0.0016791          -2.6164        0.008886 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
How to read Spatial Correlogram
  • Each row represents a distance interval (lag) at which Moran’s I was calculated.
  • The estimate column provides the calculated Moran’s I value at each distance interval.
  • The expected column shows the value of Moran’s I under the null hypothesis of no spatial autocorrelation. Here, it’s the same constant value (-0.0114943) for all intervals, indicating the assumption of no spatial autocorrelation.
  • The Pr(I) two sided column shows the p-value associated with Moran’s I at each lag.

Observations

  • There are significant positive values in the first two rows, suggesting spatial clustering or positive spatial autocorrelation at the respective distances indicated by the lags. The positive values indicate that nearby regions have similar values of GDPPC being measured.
  • There are significant negative values in the 5th and 6th rows, suggesting spatial dispersion or negative spatial autocorrelation at the respective distances indicated by the lags. The negative values suggest that neighboring regions tend to have dissimilar values of GDPPC.
  • In conclusion, this correlogram suggests that there is significant spatial autocorrelation in GDPPC at various distance intervals.

Compute Geary’s C correlogram

In the code chunk below, sp.correlogram() of spdep package is used to compute a 6-lag spatial correlogram of GDPPC. The global spatial autocorrelation used in Geary’s C. The plot() of base Graph is then used to plot the output.

GC_corr <- sp.correlogram(wm_q, 
                          hunan$GDPPC, 
                          order=6, 
                          method="C", 
                          style="W")
plot(GC_corr)

Similarly, print out the analysis report by using the code chunk below.

print(GC_corr)
Spatial correlogram for hunan$GDPPC 
method: Geary's C
        estimate expectation  variance standard deviate Pr(I) two sided    
1 (88) 0.6907223   1.0000000 0.0073364          -3.6108       0.0003052 ***
2 (88) 0.7630197   1.0000000 0.0049126          -3.3811       0.0007220 ***
3 (88) 0.9397299   1.0000000 0.0049005          -0.8610       0.3892612    
4 (88) 1.0098462   1.0000000 0.0039631           0.1564       0.8757128    
5 (88) 1.2008204   1.0000000 0.0035568           3.3673       0.0007592 ***
6 (88) 1.0773386   1.0000000 0.0058042           1.0151       0.3100407    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Observations

  • There are significant low Geary’s C values (C<1) in the first two rows, suggesting spatial clustering or positive spatial autocorrelation at the respective distances indicated by the lags. The low Geary’s C values indicate that nearby regions have similar values of GDPPC being measured.
  • There is significant high Geary’s C value (C>1) in the 5th row, suggesting spatial dispersion or negative spatial autocorrelation at the respective distances indicated by the lag. The high Geary’s C value suggest that neighboring regions tend to have dissimilar values of GDPPC.
  • In conclusion, this correlogram suggests that there is significant spatial autocorrelation in GDPPC at various distance intervals.

Cluster and Outlier Analysis

Local Indicators of Spatial Association or LISA are statistics that evaluate the existence of clusters in the spatial arrangement of a given variable. It is a collection of geospatial statistical analysis methods for analysing the location related tendency (clusters or outliers) in the attributes of geographically referenced data (points or areas). Such spatial statistics are well suited for:

  • detecting clusters or outliers;
  • identifying hot spot or cold spot areas;
  • assessing the assumptions of stationarity; and
  • identifying distances beyond which no discernible association obtains.

It can be indices decomposed from their global measures such as local Moran’s I and local Geary’s C, but any spatial statistics that satisfies the following two requirements can be considered LISA:

  • the LISA for each observation gives an indication of the extent of significant spatial clustering of similar values around that observation;
  • the sum of LISAs for all observations is proportional to a global indicator of spatial association.

Computing local Moran’s I

To compute local Moran’s I, the localmoran() function of spdep will be used. It computes Ii values, given a set of Zi values and a listw object providing neighbour weighting information for the polygon associated with the Zi values.

The code chunks below are used to compute local Moran’s I of GDPPC2012 at the county level.

fips <- order(hunan$County)
localMI <- localmoran(hunan$GDPPC, rswm_q)
head(localMI)
            Ii          E.Ii       Var.Ii        Z.Ii Pr(z != E(Ii))
1 -0.001468468 -2.815006e-05 4.723841e-04 -0.06626904      0.9471636
2  0.025878173 -6.061953e-04 1.016664e-02  0.26266425      0.7928094
3 -0.011987646 -5.366648e-03 1.133362e-01 -0.01966705      0.9843090
4  0.001022468 -2.404783e-07 5.105969e-06  0.45259801      0.6508382
5  0.014814881 -6.829362e-05 1.449949e-03  0.39085814      0.6959021
6 -0.038793829 -3.860263e-04 6.475559e-03 -0.47728835      0.6331568
How to read localmoran() output
  • Ii: the local Moran’s I statistics
  • E.Ii: the expectation of local moran statistic under the randomisation hypothesis
  • Var.Ii: the variance of local moran statistic under the randomisation hypothesis
  • Z.Ii:the standard deviate of local moran statistic
  • Pr(): the p-value of local moran statistic

The code chunk below list the content of the local Moran matrix derived by using printCoefmat().

printCoefmat(data.frame(
  localMI[fips,], 
  row.names=hunan$County[fips]),
  check.names=FALSE)
                       Ii        E.Ii      Var.Ii        Z.Ii Pr.z....E.Ii..
Anhua         -2.2493e-02 -5.0048e-03  5.8235e-02 -7.2467e-02         0.9422
Anren         -3.9932e-01 -7.0111e-03  7.0348e-02 -1.4791e+00         0.1391
Anxiang       -1.4685e-03 -2.8150e-05  4.7238e-04 -6.6269e-02         0.9472
Baojing        3.4737e-01 -5.0089e-03  8.3636e-02  1.2185e+00         0.2230
Chaling        2.0559e-02 -9.6812e-04  2.7711e-02  1.2932e-01         0.8971
Changning     -2.9868e-05 -9.0010e-09  1.5105e-07 -7.6828e-02         0.9388
Changsha       4.9022e+00 -2.1348e-01  2.3194e+00  3.3590e+00         0.0008
Chengbu        7.3725e-01 -1.0534e-02  2.2132e-01  1.5895e+00         0.1119
Chenxi         1.4544e-01 -2.8156e-03  4.7116e-02  6.8299e-01         0.4946
Cili           7.3176e-02 -1.6747e-03  4.7902e-02  3.4200e-01         0.7324
Dao            2.1420e-01 -2.0824e-03  4.4123e-02  1.0297e+00         0.3032
Dongan         1.5210e-01 -6.3485e-04  1.3471e-02  1.3159e+00         0.1882
Dongkou        5.2918e-01 -6.4461e-03  1.0748e-01  1.6338e+00         0.1023
Fenghuang      1.8013e-01 -6.2832e-03  1.3257e-01  5.1198e-01         0.6087
Guidong       -5.9160e-01 -1.3086e-02  3.7003e-01 -9.5104e-01         0.3416
Guiyang        1.8240e-01 -3.6908e-03  3.2610e-02  1.0305e+00         0.3028
Guzhang        2.8466e-01 -8.5054e-03  1.4152e-01  7.7931e-01         0.4358
Hanshou        2.5878e-02 -6.0620e-04  1.0167e-02  2.6266e-01         0.7928
Hengdong       9.9964e-03 -4.9063e-04  6.7742e-03  1.2742e-01         0.8986
Hengnan        2.8064e-02 -3.2160e-04  3.7597e-03  4.6294e-01         0.6434
Hengshan      -5.8201e-03 -3.0437e-05  5.1076e-04 -2.5618e-01         0.7978
Hengyang       6.2997e-02 -1.3046e-03  2.1865e-02  4.3486e-01         0.6637
Hongjiang      1.8790e-01 -2.3019e-03  3.1725e-02  1.0678e+00         0.2856
Huarong       -1.5389e-02 -1.8667e-03  8.1030e-02 -4.7503e-02         0.9621
Huayuan        8.3772e-02 -8.5569e-04  2.4495e-02  5.4072e-01         0.5887
Huitong        2.5997e-01 -5.2447e-03  1.1077e-01  7.9685e-01         0.4255
Jiahe         -1.2431e-01 -3.0550e-03  5.1111e-02 -5.3633e-01         0.5917
Jianghua       2.8651e-01 -3.8280e-03  8.0968e-02  1.0204e+00         0.3076
Jiangyong      2.4337e-01 -2.7082e-03  1.1746e-01  7.1800e-01         0.4728
Jingzhou       1.8270e-01 -8.5106e-04  2.4363e-02  1.1759e+00         0.2396
Jinshi        -1.1988e-02 -5.3666e-03  1.1334e-01 -1.9667e-02         0.9843
Jishou        -2.8680e-01 -2.6305e-03  4.4028e-02 -1.3543e+00         0.1756
Lanshan        6.3334e-02 -9.6365e-04  2.0441e-02  4.4972e-01         0.6529
Leiyang        1.1581e-02 -1.4948e-04  2.5082e-03  2.3422e-01         0.8148
Lengshuijiang -1.7903e+00 -8.2129e-02  2.1598e+00 -1.1623e+00         0.2451
Li             1.0225e-03 -2.4048e-07  5.1060e-06  4.5260e-01         0.6508
Lianyuan      -1.4672e-01 -1.8983e-03  1.9145e-02 -1.0467e+00         0.2952
Liling         1.3774e+00 -1.5097e-02  4.2601e-01  2.1335e+00         0.0329
Linli          1.4815e-02 -6.8294e-05  1.4499e-03  3.9086e-01         0.6959
Linwu         -2.4621e-03 -9.0703e-06  1.9258e-04 -1.7676e-01         0.8597
Linxiang       6.5904e-02 -2.9028e-03  2.5470e-01  1.3634e-01         0.8916
Liuyang        3.3688e+00 -7.7502e-02  1.5180e+00  2.7972e+00         0.0052
Longhui        8.0801e-01 -1.1377e-02  1.5538e-01  2.0787e+00         0.0376
Longshan       7.5663e-01 -1.1100e-02  3.1449e-01  1.3690e+00         0.1710
Luxi           1.8177e-01 -2.4855e-03  3.4249e-02  9.9561e-01         0.3194
Mayang         2.1852e-01 -5.8773e-03  9.8049e-02  7.1663e-01         0.4736
Miluo          1.8704e+00 -1.6927e-02  2.7925e-01  3.5715e+00         0.0004
Nan           -9.5789e-03 -4.9497e-04  6.8341e-03 -1.0988e-01         0.9125
Ningxiang      1.5607e+00 -7.3878e-02  8.0012e-01  1.8274e+00         0.0676
Ningyuan       2.0910e-01 -7.0884e-03  8.2306e-02  7.5356e-01         0.4511
Pingjiang     -9.8964e-01 -2.6457e-03  5.6027e-02 -4.1698e+00         0.0000
Qidong         1.1806e-01 -2.1207e-03  2.4747e-02  7.6396e-01         0.4449
Qiyang         6.1966e-02 -7.3374e-04  8.5743e-03  6.7712e-01         0.4983
Rucheng       -3.6992e-01 -8.8999e-03  2.5272e-01 -7.1814e-01         0.4727
Sangzhi        2.5053e-01 -4.9470e-03  6.8000e-02  9.7972e-01         0.3272
Shaodong      -3.2659e-02 -3.6592e-05  5.0546e-04 -1.4510e+00         0.1468
Shaoshan       2.1223e+00 -5.0227e-02  1.3668e+00  1.8583e+00         0.0631
Shaoyang       5.9499e-01 -1.1253e-02  1.3012e-01  1.6807e+00         0.0928
Shimen        -3.8794e-02 -3.8603e-04  6.4756e-03 -4.7729e-01         0.6332
Shuangfeng     9.2835e-03 -2.2867e-03  3.1516e-02  6.5174e-02         0.9480
Shuangpai      8.0591e-02 -3.1366e-04  8.9838e-03  8.5358e-01         0.3933
Suining        3.7585e-01 -3.5933e-03  4.1870e-02  1.8544e+00         0.0637
Taojiang      -2.5394e-01 -1.2395e-03  1.4477e-02 -2.1002e+00         0.0357
Taoyuan        1.4729e-02 -1.2039e-04  8.5103e-04  5.0903e-01         0.6107
Tongdao        4.6482e-01 -6.9870e-03  1.9879e-01  1.0582e+00         0.2900
Wangcheng      4.4220e+00 -1.1067e-01  1.3596e+00  3.8873e+00         0.0001
Wugang         7.1003e-01 -7.8144e-03  1.0710e-01  2.1935e+00         0.0283
Xiangtan       2.4530e-01 -3.6457e-04  3.2319e-03  4.3213e+00         0.0000
Xiangxiang     2.6271e-01 -1.2703e-03  2.1290e-02  1.8092e+00         0.0704
Xiangyin       5.4525e-01 -4.7442e-03  7.9236e-02  1.9539e+00         0.0507
Xinhua         1.1810e-01 -6.2649e-03  8.6001e-02  4.2409e-01         0.6715
Xinhuang       1.5725e-01 -4.1820e-03  3.6648e-01  2.6667e-01         0.7897
Xinning        6.8928e-01 -9.6674e-03  2.0328e-01  1.5502e+00         0.1211
Xinshao        5.7578e-02 -8.5932e-03  1.1769e-01  1.9289e-01         0.8470
Xintian       -7.4050e-03 -5.1493e-03  1.0877e-01 -6.8395e-03         0.9945
Xupu           3.2406e-01 -5.7468e-03  5.7735e-02  1.3726e+00         0.1699
Yanling       -6.9021e-02 -5.9211e-04  9.9306e-03 -6.8667e-01         0.4923
Yizhang       -2.6844e-01 -2.2463e-03  4.7588e-02 -1.2202e+00         0.2224
Yongshun       6.3064e-01 -1.1350e-02  1.8830e-01  1.4795e+00         0.1390
Yongxing       4.3411e-01 -9.0735e-03  1.5088e-01  1.1409e+00         0.2539
You            7.8750e-02 -7.2728e-03  1.2116e-01  2.4714e-01         0.8048
Yuanjiang      2.0004e-04 -1.7760e-04  2.9798e-03  6.9181e-03         0.9945
Yuanling       8.7298e-03 -2.2981e-06  2.3221e-05  1.8121e+00         0.0700
Yueyang        4.1189e-02 -1.9768e-04  2.3113e-03  8.6085e-01         0.3893
Zhijiang       1.0476e-01 -7.8123e-04  1.3100e-02  9.2214e-01         0.3565
Zhongfang     -2.2685e-01 -2.1455e-03  3.5927e-02 -1.1855e+00         0.2358
Zhuzhou        3.2864e-01 -5.2432e-04  7.2391e-03  3.8688e+00         0.0001
Zixing        -7.6849e-01 -8.8210e-02  9.4057e-01 -7.0144e-01         0.4830

Mapping local Moran’s I

Before mapping the local Moran’s I map, append the local Moran’s I dataframe (i.e. localMI) to hunan SpatialPolygonDataFrame. The code chunks below can be used to perform the task. The resultant SpatialPolygonDataFrame is named hunan.localMI.

hunan.localMI <- cbind(hunan,localMI) %>%
  rename(Pr.Ii = Pr.z....E.Ii..)

Using the choropleth mapping functions of tmap package, plot the local Moran’s I values using the code chunks below.

tm_shape(hunan.localMI) +
  tm_fill(col = "Ii", 
          style = "pretty",
          palette = "RdBu",
          title = "local moran statistics") +
  tm_borders(alpha = 0.5)

The choropleth above shows that there is evidence for both positive and negative Ii values. However, it is useful to consider the p-values for each of these values above. The code chunks below produce a choropleth map of Moran’s I p-values by using functions of tmap package.

tm_shape(hunan.localMI) +
  tm_fill(col = "Pr.Ii", 
          breaks=c(-Inf, 0.001, 0.01, 0.05, 0.1, Inf),
          palette="-Blues", 
          title = "local Moran's I p-values") +
  tm_borders(alpha = 0.5)

For effective interpretation, it is better to plot both the local Moran’s I values map and its corresponding p-values map next to each other. The code chunk below will be used to create such visualisation.

localMI.map <- tm_shape(hunan.localMI) +
  tm_fill(col = "Ii", 
          style = "pretty", 
          title = "local moran statistics") +
  tm_borders(alpha = 0.5)

pvalue.map <- tm_shape(hunan.localMI) +
  tm_fill(col = "Pr.Ii", 
          breaks=c(-Inf, 0.001, 0.01, 0.05, 0.1, Inf),
          palette="-Blues", 
          title = "local Moran's I p-values") +
  tm_borders(alpha = 0.5)

tmap_arrange(localMI.map, pvalue.map, asp=1, ncol=2)

Creating a LISA Cluster Map

The LISA Cluster Map shows the significant locations color coded by type of spatial autocorrelation. The first step before generating the LISA cluster map is to plot the Moran scatterplot.

Plotting Moran scatterplot

The Moran scatterplot is an illustration of the relationship between the values of the chosen attribute at each location and the average value of the same attribute at neighboring locations. The code chunk below plots the Moran scatterplot of GDPPC 2012 by using moran.plot() of spdep.

nci <- moran.plot(hunan$GDPPC, rswm_q,
                  labels=as.character(hunan$County), 
                  xlab="GDPPC 2012", 
                  ylab="Spatially Lag GDPPC 2012")

Notice that the plot is split in 4 quadrants. The top right corner belongs to areas that have high GDPPC and are surrounded by other areas that have the average level of GDPPC. This are the high-high locations in the lesson slide.

Plotting Moran scatterplot with standardised variable

First, use scale() to center and scale the variable. Here, centering is done by subtracting the mean (omitting NAs) the corresponding columns, and scaling is done by dividing the (centered) variable by their standard deviations.

hunan$Z.GDPPC <- scale(hunan$GDPPC) %>% 
  as.vector 

The as.vector() added to the end ensures that the resultant data type is a vector. Now, plot the Moran scatterplot again using the code chunk below.

nci2 <- moran.plot(hunan$Z.GDPPC, rswm_q,
                   labels=as.character(hunan$County),
                   xlab="z-GDPPC 2012", 
                   ylab="Spatially Lag z-GDPPC 2012")

Preparing LISA map classes

The code chunks below show the steps to prepare a LISA cluster map.

1quadrant <- vector(mode="numeric",length=nrow(localMI))
2hunan$lag_GDPPC <- lag.listw(rswm_q, hunan$GDPPC)
DV <- hunan$lag_GDPPC - mean(hunan$lag_GDPPC)
3LM_I <- localMI[,1]
4signif <- 0.05
5quadrant[DV <0 & LM_I>0] <- 1
quadrant[DV >0 & LM_I<0] <- 2
quadrant[DV <0 & LM_I<0] <- 3
quadrant[DV >0 & LM_I>0] <- 4
6quadrant[localMI[,5]>signif] <- 0
1
Create the quadrant objects.
2
Derive the spatially lagged variable of interest (i.e. GDPPC) and center the spatially lagged variable around its mean.
3
Center the local Moran’s around the mean.
4
Set a statistical significance level for the local Moran.
5
Define the low-low (1), low-high (2), high-low (3) and high-high (4) categories.
6
Assign non-significant Moran values to the category 0.

Plotting LISA map

Now, build the LISA map using the code chunks below.

hunan.localMI$quadrant <- quadrant
colors <- c("#ffffff", "#2c7bb6", "#abd9e9", "#fdae61", "#d7191c")
clusters <- c("insignificant", "low-low", "low-high", "high-low", "high-high")

tm_shape(hunan.localMI) +
  tm_fill(col = "quadrant", 
          style = "cat", 
          palette = colors[c(sort(unique(quadrant)))+1], 
          labels = clusters[c(sort(unique(quadrant)))+1],
          popup.vars = c("")) +
  tm_view(set.zoom.limits = c(11,17)) +
  tm_borders(alpha=0.5)

For effective interpretation, it is better to plot the LISA map alongside the Moran’s I values map and its corresponding p-values map. The code chunk below will be used to create such visualisation.

gdppc <- qtm(hunan, "GDPPC")

hunan.localMI$quadrant <- quadrant
colors <- c("#ffffff", "#2c7bb6", "#abd9e9", "#fdae61", "#d7191c")
clusters <- c("insignificant", "low-low", "low-high", "high-low", "high-high")

LISAmap <- tm_shape(hunan.localMI) +
  tm_fill(col = "quadrant", 
          style = "cat", 
          palette = colors[c(sort(unique(quadrant)))+1], 
          labels = clusters[c(sort(unique(quadrant)))+1],
          popup.vars = c("")) +
  tm_view(set.zoom.limits = c(11,17)) +
  tm_borders(alpha=0.5)

tmap_arrange(gdppc, LISAmap, localMI.map, pvalue.map, asp=1, ncol=2)

Hot Spot and Cold Spot Area Analysis

Beside detecting cluster and outliers, localised spatial statistics can be also used to detect hot spot and/or cold spot areas. Generally, ‘hot spot’ describes a region or value that is higher relative to its surroundings.

Getis and Ord’s G-Statistics

The Getis and Ord’s G-statistics can be used to detect spatial anomalies as it looks at neighbours within a defined proximity to identify where either high or low values clutser spatially. Here, statistically significant hot-spots are recognised as areas of high values where other areas within a neighbourhood range also share high values too.

The analysis consists of three steps:

  1. Deriving spatial weights matrix
  2. Computing Gi statistics
  3. Mapping Gi statistics

Deriving distance-based weights matrix

First, define a new set of neighbours. Whist the spatial autocorrelation considered units which shared borders, for Getis-Ord neighbours are defined based on distance.

There are two type of distance-based proximity matrix, they are:

Derive the centroids:

Show code
longitude <- map_dbl(hunan$geometry, ~st_centroid(.x)[[1]])
latitude <- map_dbl(hunan$geometry, ~st_centroid(.x)[[2]])
coords <- cbind(longitude, latitude)

Determine the cut-off distance:

Show code
k1 <- knn2nb(knearneigh(coords))
k1dists <- unlist(nbdists(k1, coords, longlat = TRUE))
summary(k1dists)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  24.79   32.57   38.01   39.07   44.52   61.79 

The largest first nearest neighbour distance is 61.79 km, so set this as the upper threshold to ensure all units will have at least one neighbour.

Compute fixed distance weights matrix:

Show code
wm_d62 <- dnearneigh(coords, 0, 62, longlat = TRUE)
wm62_lw <- nb2listw(wm_d62, style = 'B')
summary(wm62_lw)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 324 
Percentage nonzero weights: 4.183884 
Average number of links: 3.681818 
Link number distribution:

 1  2  3  4  5  6 
 6 15 14 26 20  7 
6 least connected regions:
6 15 30 32 56 65 with 1 link
7 most connected regions:
21 28 35 45 50 52 82 with 6 links

Weights style: B 
Weights constants summary:
   n   nn  S0  S1   S2
B 88 7744 324 648 5440

Use k-nearest neighbours to control the numbers of neighbours:

Show code
knn <- knn2nb(knearneigh(coords, k=8))
knn_lw <- nb2listw(knn, style = 'B')
summary(knn_lw)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 704 
Percentage nonzero weights: 9.090909 
Average number of links: 8 
Non-symmetric neighbours list
Link number distribution:

 8 
88 
88 least connected regions:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 with 8 links
88 most connected regions:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 with 8 links

Weights style: B 
Weights constants summary:
   n   nn  S0   S1    S2
B 88 7744 704 1300 23014

Computing Gi statistics

Show code
fips <- order(hunan$County)
gi.fixed <- localG(hunan$GDPPC, wm62_lw)
gi.fixed
 [1]  0.436075843 -0.265505650 -0.073033665  0.413017033  0.273070579
 [6] -0.377510776  2.863898821  2.794350420  5.216125401  0.228236603
[11]  0.951035346 -0.536334231  0.176761556  1.195564020 -0.033020610
[16]  1.378081093 -0.585756761 -0.419680565  0.258805141  0.012056111
[21] -0.145716531 -0.027158687 -0.318615290 -0.748946051 -0.961700582
[26] -0.796851342 -1.033949773 -0.460979158 -0.885240161 -0.266671512
[31] -0.886168613 -0.855476971 -0.922143185 -1.162328599  0.735582222
[36] -0.003358489 -0.967459309 -1.259299080 -1.452256513 -1.540671121
[41] -1.395011407 -1.681505286 -1.314110709 -0.767944457 -0.192889342
[46]  2.720804542  1.809191360 -1.218469473 -0.511984469 -0.834546363
[51] -0.908179070 -1.541081516 -1.192199867 -1.075080164 -1.631075961
[56] -0.743472246  0.418842387  0.832943753 -0.710289083 -0.449718820
[61] -0.493238743 -1.083386776  0.042979051  0.008596093  0.136337469
[66]  2.203411744  2.690329952  4.453703219 -0.340842743 -0.129318589
[71]  0.737806634 -1.246912658  0.666667559  1.088613505 -0.985792573
[76]  1.233609606 -0.487196415  1.626174042 -1.060416797  0.425361422
[81] -0.837897118 -0.314565243  0.371456331  4.424392623 -0.109566928
[86]  1.364597995 -1.029658605 -0.718000620
attr(,"internals")
               Gi      E(Gi)        V(Gi)        Z(Gi) Pr(z != E(Gi))
 [1,] 0.064192949 0.05747126 2.375922e-04  0.436075843   6.627817e-01
 [2,] 0.042300020 0.04597701 1.917951e-04 -0.265505650   7.906200e-01
 [3,] 0.044961480 0.04597701 1.933486e-04 -0.073033665   9.417793e-01
 [4,] 0.039475779 0.03448276 1.461473e-04  0.413017033   6.795941e-01
 [5,] 0.049767939 0.04597701 1.927263e-04  0.273070579   7.847990e-01
 [6,] 0.008825335 0.01149425 4.998177e-05 -0.377510776   7.057941e-01
 [7,] 0.050807266 0.02298851 9.435398e-05  2.863898821   4.184617e-03
 [8,] 0.083966739 0.04597701 1.848292e-04  2.794350420   5.200409e-03
 [9,] 0.115751554 0.04597701 1.789361e-04  5.216125401   1.827045e-07
[10,] 0.049115587 0.04597701 1.891013e-04  0.228236603   8.194623e-01
[11,] 0.045819180 0.03448276 1.420884e-04  0.951035346   3.415864e-01
[12,] 0.049183846 0.05747126 2.387633e-04 -0.536334231   5.917276e-01
[13,] 0.048429181 0.04597701 1.924532e-04  0.176761556   8.596957e-01
[14,] 0.034733752 0.02298851 9.651140e-05  1.195564020   2.318667e-01
[15,] 0.011262043 0.01149425 4.945294e-05 -0.033020610   9.736582e-01
[16,] 0.065131196 0.04597701 1.931870e-04  1.378081093   1.681783e-01
[17,] 0.027587075 0.03448276 1.385862e-04 -0.585756761   5.580390e-01
[18,] 0.029409313 0.03448276 1.461397e-04 -0.419680565   6.747188e-01
[19,] 0.061466754 0.05747126 2.383385e-04  0.258805141   7.957856e-01
[20,] 0.057656917 0.05747126 2.371303e-04  0.012056111   9.903808e-01
[21,] 0.066518379 0.06896552 2.820326e-04 -0.145716531   8.841452e-01
[22,] 0.045599896 0.04597701 1.928108e-04 -0.027158687   9.783332e-01
[23,] 0.030646753 0.03448276 1.449523e-04 -0.318615290   7.500183e-01
[24,] 0.035635552 0.04597701 1.906613e-04 -0.748946051   4.538897e-01
[25,] 0.032606647 0.04597701 1.932888e-04 -0.961700582   3.362000e-01
[26,] 0.035001352 0.04597701 1.897172e-04 -0.796851342   4.255374e-01
[27,] 0.012746354 0.02298851 9.812587e-05 -1.033949773   3.011596e-01
[28,] 0.061287917 0.06896552 2.773884e-04 -0.460979158   6.448136e-01
[29,] 0.014277403 0.02298851 9.683314e-05 -0.885240161   3.760271e-01
[30,] 0.009622875 0.01149425 4.924586e-05 -0.266671512   7.897221e-01
[31,] 0.014258398 0.02298851 9.705244e-05 -0.886168613   3.755267e-01
[32,] 0.005453443 0.01149425 4.986245e-05 -0.855476971   3.922871e-01
[33,] 0.043283712 0.05747126 2.367109e-04 -0.922143185   3.564539e-01
[34,] 0.020763514 0.03448276 1.393165e-04 -1.162328599   2.451020e-01
[35,] 0.081261843 0.06896552 2.794398e-04  0.735582222   4.619850e-01
[36,] 0.057419907 0.05747126 2.338437e-04 -0.003358489   9.973203e-01
[37,] 0.013497133 0.02298851 9.624821e-05 -0.967459309   3.333145e-01
[38,] 0.019289310 0.03448276 1.455643e-04 -1.259299080   2.079223e-01
[39,] 0.025996272 0.04597701 1.892938e-04 -1.452256513   1.464303e-01
[40,] 0.016092694 0.03448276 1.424776e-04 -1.540671121   1.233968e-01
[41,] 0.035952614 0.05747126 2.379439e-04 -1.395011407   1.630124e-01
[42,] 0.031690963 0.05747126 2.350604e-04 -1.681505286   9.266481e-02
[43,] 0.018750079 0.03448276 1.433314e-04 -1.314110709   1.888090e-01
[44,] 0.015449080 0.02298851 9.638666e-05 -0.767944457   4.425202e-01
[45,] 0.065760689 0.06896552 2.760533e-04 -0.192889342   8.470456e-01
[46,] 0.098966900 0.05747126 2.326002e-04  2.720804542   6.512325e-03
[47,] 0.085415780 0.05747126 2.385746e-04  1.809191360   7.042128e-02
[48,] 0.038816536 0.05747126 2.343951e-04 -1.218469473   2.230456e-01
[49,] 0.038931873 0.04597701 1.893501e-04 -0.511984469   6.086619e-01
[50,] 0.055098610 0.06896552 2.760948e-04 -0.834546363   4.039732e-01
[51,] 0.033405005 0.04597701 1.916312e-04 -0.908179070   3.637836e-01
[52,] 0.043040784 0.06896552 2.829941e-04 -1.541081516   1.232969e-01
[53,] 0.011297699 0.02298851 9.615920e-05 -1.192199867   2.331829e-01
[54,] 0.040968457 0.05747126 2.356318e-04 -1.075080164   2.823388e-01
[55,] 0.023629663 0.04597701 1.877170e-04 -1.631075961   1.028743e-01
[56,] 0.006281129 0.01149425 4.916619e-05 -0.743472246   4.571958e-01
[57,] 0.063918654 0.05747126 2.369553e-04  0.418842387   6.753313e-01
[58,] 0.070325003 0.05747126 2.381374e-04  0.832943753   4.048765e-01
[59,] 0.025947288 0.03448276 1.444058e-04 -0.710289083   4.775249e-01
[60,] 0.039752578 0.04597701 1.915656e-04 -0.449718820   6.529132e-01
[61,] 0.049934283 0.05747126 2.334965e-04 -0.493238743   6.218439e-01
[62,] 0.030964195 0.04597701 1.920248e-04 -1.083386776   2.786368e-01
[63,] 0.058129184 0.05747126 2.343319e-04  0.042979051   9.657182e-01
[64,] 0.046096514 0.04597701 1.932637e-04  0.008596093   9.931414e-01
[65,] 0.012459080 0.01149425 5.008051e-05  0.136337469   8.915545e-01
[66,] 0.091447733 0.05747126 2.377744e-04  2.203411744   2.756574e-02
[67,] 0.049575872 0.02298851 9.766513e-05  2.690329952   7.138140e-03
[68,] 0.107907212 0.04597701 1.933581e-04  4.453703219   8.440175e-06
[69,] 0.019616151 0.02298851 9.789454e-05 -0.340842743   7.332220e-01
[70,] 0.032923393 0.03448276 1.454032e-04 -0.129318589   8.971056e-01
[71,] 0.030317663 0.02298851 9.867859e-05  0.737806634   4.606320e-01
[72,] 0.019437582 0.03448276 1.455870e-04 -1.246912658   2.124295e-01
[73,] 0.055245460 0.04597701 1.932838e-04  0.666667559   5.049845e-01
[74,] 0.074278054 0.05747126 2.383538e-04  1.088613505   2.763244e-01
[75,] 0.013269580 0.02298851 9.719982e-05 -0.985792573   3.242349e-01
[76,] 0.049407829 0.03448276 1.463785e-04  1.233609606   2.173484e-01
[77,] 0.028605749 0.03448276 1.455139e-04 -0.487196415   6.261191e-01
[78,] 0.039087662 0.02298851 9.801040e-05  1.626174042   1.039126e-01
[79,] 0.031447120 0.04597701 1.877464e-04 -1.060416797   2.889550e-01
[80,] 0.064005294 0.05747126 2.359641e-04  0.425361422   6.705732e-01
[81,] 0.044606529 0.05747126 2.357330e-04 -0.837897118   4.020885e-01
[82,] 0.063700493 0.06896552 2.801427e-04 -0.314565243   7.530918e-01
[83,] 0.051142205 0.04597701 1.933560e-04  0.371456331   7.102977e-01
[84,] 0.102121112 0.04597701 1.610278e-04  4.424392623   9.671399e-06
[85,] 0.021901462 0.02298851 9.843172e-05 -0.109566928   9.127528e-01
[86,] 0.064931813 0.04597701 1.929430e-04  1.364597995   1.723794e-01
[87,] 0.031747344 0.04597701 1.909867e-04 -1.029658605   3.031703e-01
[88,] 0.015893319 0.02298851 9.765131e-05 -0.718000620   4.727569e-01
attr(,"cluster")
 [1] Low  Low  High High High High High High High Low  Low  High Low  Low  Low 
[16] High High High High Low  High High Low  Low  High Low  Low  Low  Low  Low 
[31] Low  Low  Low  High Low  Low  Low  Low  Low  Low  High Low  Low  Low  Low 
[46] High High Low  Low  Low  Low  High Low  Low  Low  Low  Low  High Low  Low 
[61] Low  Low  Low  High High High Low  High Low  Low  High Low  High High Low 
[76] High Low  Low  Low  Low  Low  Low  High High Low  High Low  Low 
Levels: Low High
attr(,"gstari")
[1] FALSE
attr(,"call")
localG(x = hunan$GDPPC, listw = wm62_lw)
attr(,"class")
[1] "localG"

The output of localG() is a vector of G or Gstar values, with attributes gstari set to TRUE or FALSE, call set to the function call, and class localG.

The Gi statistics is represented as a Z-score. Greater values represent a greater intensity of clustering and the direction (positive or negative) indicates high or low clusters.

Next, join the Gi values to the corresponding hunan sf data frame by using the code chunk below:

  1. Convert the output vector (i.e. gi.fixed) into R matrix object by using as.matrix().
  2. cbind() is used to join hunan data and gi.fixed matrix to produce a new SpatialPolygonDataFrame called hunan.gi.
  3. The field name of the Gi values is then renamed to gstat_fixed by using rename().
hunan.gi <- cbind(hunan, as.matrix(gi.fixed)) %>%
  rename(gstat_fixed = as.matrix.gi.fixed.)

The code chunk below shows the functions used to map the Gi values derived using fixed distance weights matrix.

gdppc <- qtm(hunan, "GDPPC")

Gimap <-tm_shape(hunan.gi) +
  tm_fill(col = "gstat_fixed", 
          style = "pretty",
          palette="-RdBu",
          title = "local Gi") +
  tm_borders(alpha = 0.5)

tmap_arrange(gdppc, Gimap, asp=1, ncol=2)

The code chunk below is used to compute the Gi values for GDPPC2012 by using an adaptive distance weights matrix (i.e knb_lw).

fips <- order(hunan$County)
gi.adaptive <- localG(hunan$GDPPC, knn_lw)
hunan.gi <- cbind(hunan, as.matrix(gi.adaptive)) %>%
  rename(gstat_adaptive = as.matrix.gi.adaptive.)

To visualise the locations of hot spot and cold spot areas, the choropleth mapping functions of tmap package will be used to map the Gi values.

The code chunk below shows the functions used to map the Gi values derived using fixed distance weights matrix.

gdppc<- qtm(hunan, "GDPPC")

Gimap <- tm_shape(hunan.gi) + 
  tm_fill(col = "gstat_adaptive", 
          style = "pretty", 
          palette="-RdBu", 
          title = "local Gi") + 
  tm_borders(alpha = 0.5)

tmap_arrange(gdppc, 
             Gimap, 
             asp=1, 
             ncol=2)